Sự khác biệt cốt lõi giữa Logistic Regression và Linear Regression là gì?

Tác giả: AI VIET NAM (AI VIET NAM)

Keywords: logistic vs linear regression, khác biệt logistic regression, linear regression là gì, phân loại và hồi quy

Mở đầu – Vì sao nhiều bạn dễ nhầm hai mô hình này?

Khi bắt đầu học Machine Learning, rất nhiều bạn gặp câu hỏi quen thuộc:

“Linear Regression và Logistic Regression đều có chữ Regression. Vậy chúng khác gì nhau? Sao một cái lại dùng cho phân loại?”

Sự nhầm lẫn này xuất hiện vì tên gọi dễ gây hiểu lầm. Nếu chỉ nhìn công thức, bạn sẽ thấy cả hai đều dùng một dạng hàm tuyến tính. Nhưng khi hiểu bản chất và mục tiêu tối ưu, bạn sẽ thấy chúng khác nhau ngay từ gốc — một nội dung quan trọng trong nhóm kiến thức ML cơ bản (Module 4 của chương trình học thuật AIO).

Sự khác biệt cốt lõi: Loại bài toán và cách mô hình hóa đầu ra

👉 Linear Regression

  • Dự đoán giá trị liên tục.
  • Mục tiêu: tìm một đường (hoặc siêu phẳng) phù hợp nhất để dự đoán một con số.
  • Đầu ra có thể là bất kỳ giá trị thực nào.

👉 Logistic Regression

  • Dự đoán xác suất thuộc về một lớp.
  • Mục tiêu: ánh xạ đầu ra tuyến tính sang giá trị nằm giữa 0 và 1 bằng hàm sigmoid.
  • Được dùng chủ yếu cho phân loại nhị phân (và có thể mở rộng đa lớp).

Điểm cốt lõi:

Linear Regression dự đoán bao nhiêu, Logistic Regression dự đoán thuộc lớp nào.

Khác biệt 1: Bản chất đầu ra

Linear Regression

Đầu ra là một số thực, ví dụ:

  • giá nhà
  • điểm thi
  • nhiệt độ
  • doanh thu

Không có giới hạn trên/dưới.

Logistic Regression

Đầu ra là một xác suất trong khoảng

(0, 1)
.

Để ra quyết định, ta thường đặt một ngưỡng:

  • nếu > 0.5 → lớp 1
  • nếu ≤ 0.5 → lớp 0

Khác biệt 2: Hàm kích hoạt (activation)

  • Logistic Regression dùng hàm sigmoid để “nén” giá trị tuyến tính về khoảng 0–1.
  • Linear Regression không dùng bất kỳ hàm kích hoạt nào.

Hàm sigmoid giúp Logistic Regression xử lý bài toán phân loại dưới dạng xác suất — điều mà Linear Regression không làm được.

Khác biệt 3: Hàm mất mát (Loss function)

Linear Regression

  • Dùng Mean Squared Error (MSE).
  • Mục tiêu: tối thiểu hóa sai số dự đoán so với giá trị thật.

Logistic Regression

  • Dùng Binary Cross-Entropy (Log Loss).
  • Mục tiêu: mô hình hóa xác suất chính xác hơn.

Điều này thuộc nhóm optimization–loss–metrics trong Module 5 của AIO.

Khác biệt 4: Ý nghĩa mô hình hóa

Linear Regression

  • Tìm mối quan hệ tuyến tính giữa biến đầu vào và đầu ra.
  • Dùng cho bài toán dạng hồi quy.

Logistic Regression

  • Biến hồi quy tuyến tính thành một mô hình xác suất.
  • Dùng cho phân loại.

Điểm đáng chú ý: Logistic Regression không phải mô hình hồi quy, mà là mô hình phân loại có lõi toán học dạng hồi quy tuyến tính.

Ví dụ minh họa dễ hình dung

Linear Regression

Bạn dự đoán giá nhà dựa trên diện tích:

  • 50m² → 2 tỷ
  • 60m² → 2.5 tỷ
  • 70m² → 3 tỷ

Đầu ra liên tục.

Logistic Regression

Bạn dự đoán email có phải spam hay không:

  • xác suất 0.9 → spam
  • xác suất 0.2 → không spam

Đây là phân loại nhị phân.

Khác biệt 5: Ứng dụng thực tế

Linear Regression phù hợp:

  • dự đoán giá
  • dự đoán lượng tiêu thụ
  • dự báo xu hướng
  • mô hình hóa quan hệ tuyến tính

Logistic Regression phù hợp:

  • phân loại tin nhắn spam
  • phát hiện khách hàng rời bỏ (churn prediction)
  • phân loại bệnh trong y tế
  • phân loại cảm xúc văn bản

Góc nhìn khi làm dự án AI/ML

Sự khác biệt giữa hai mô hình thể hiện rõ nhất trong:

  • cách tiền xử lý dữ liệu (Module 3 – ETL)
  • kiểm tra outliers
  • lựa chọn thang đo (scaling)
  • cách đánh giá mô hình (accuracy và AUC khác với MSE)

Một sai lầm phổ biến là dùng Linear Regression cho phân loại. Dù về mặt toán học vẫn chạy được, nhưng mô hình sẽ cho ra xác suất vượt quá 1 hoặc âm — không có ý nghĩa thực tế.

Liên hệ kiến thức nền

Học viên AI thường gặp Logistic và Linear Regression khi kết nối các mảng:

  • Đại số tuyến tính & xác suất (Module 1–2)
  • ML cơ bản: regression & classification (Module 4)
  • Loss & optimization (Module 5)
  • Ứng dụng NLP/CV về phân loại (Module 9–10)

Khi ghép các mảnh kiến thức lại, sự khác biệt giữa hai thuật toán trở nên rõ ràng hơn rất nhiều.

Lời khuyên dành cho người mới

Bạn có thể thử:

  • chạy cả hai mô hình trên cùng một tập dữ liệu và quan sát đầu ra
  • thay đổi ngưỡng 0.5 của Logistic Regression để thấy ảnh hưởng
  • thử phân loại một bộ dữ liệu nhỏ để hiểu ý nghĩa xác suất

Việc thử nghiệm này giúp hiểu bản chất thay vì học thuộc.

Kết luận

Điểm khác biệt cốt lõi giữa Logistic Regression và Linear Regression nằm ở loại bài toán mà chúng giải quyết:

  • Linear Regression → dự đoán giá trị liên tục.
  • Logistic Regression → dự đoán xác suất cho phân loại.

Sự khác biệt kéo theo thay đổi ở hàm kích hoạt, hàm mất mát và cách diễn giải, tạo nên hai mô hình phục vụ hai mục đích hoàn toàn khác nhau trong Machine Learning.

Tài nguyên học AI: